Search results for "Closed category"
showing 10 items of 10 documents
Topological systems and Artin glueing
2012
Abstract Using methods of categorical fuzzy topology, the paper shows a relation between topological systems of S. Vickers and Artin glueing of M. Artin. Inspired by the problem of interrelations between algebra and topology, we show the necessary and sufficient conditions for the category, obtained by Artin glueing along an adjoint functor, to be (co)algebraic and (co)monadic, incorporating the respective result of G. Wraith. As a result, we confirm the algebraic nature of the category of topological systems, showing that it is monadic.
Wellfounded Trees and Dependent Polynomial Functors
2004
We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by in- vestigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class of endofunctors on locally cartesian closed cat- egories.
Hypergraph functor and attachment
2010
Using an arbitrary variety of algebras, the paper introduces a fuzzified version of the notion of attachment in a complete lattice of Guido, to provide a common framework for the concept of hypergraph functor considered by different authors in the literature. The new notion also gives rise to a category of variable-basis topological spaces which is a proper supercategory of the respective category of Rodabaugh.
On a generalization of Goguen's category Set(L)
2007
The paper considers a category which generalizes Goguen's category Set(L) of L-fuzzy sets with a fixed basis L. We show the necessary and sufficient conditions for the generalized category to be a quasitopos and consider additional inner structure supplied by the latter property.
Some remarks on the category SET(L), part III
2004
This paper considers the category SET(L) of L-subsets of sets with a fixed basis L and is a continuation of our previous investigation of this category. Here we study its general properties (e.g., we derive that the category is a topological construct) as well as some of its special objects and morphisms.
Categories of lattice-valued sets as categories of arrows
2006
In this paper we introduce a category X(A) which is a generalization of the category of lattice-valued subsets of sets Set(JCPos) introduced by us earlier. We show the necessary and sufficient conditions for X(A) to be topological over XxA.
The cartesian closed bicategory of generalised species of structures
2007
AbstractThe concept of generalised species of structures between small categories and, correspondingly, that of generalised analytic functor between presheaf categories are introduced. An operation of substitution for generalised species, which is the counterpart to the composition of generalised analytic functors, is also put forward. These definitions encompass most notions of combinatorial species considered in the literature — including of course Joyal's original notion — together with their associated substitution operation. Our first main result exhibits the substitution calculus of generalised species as arising from a Kleisli bicategory for a pseudo-comonad on profunctors. Our secon…
On operads, bimodules and analytic functors
2017
We develop further the theory of operads and analytic functors. In particular, we introduce a bicategory that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that this bicategory is cartesian closed. In order to obtain this result, we extend the theory of distributors and the formal theory of monads.
Polynomial functors and polynomial monads
2009
We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.
On the category Set(JCPos)
2006
Category Set(JCPos) of lattice-valued subsets of sets is introduced and studied. We prove that it is topological over SetxJCPos and show its ''natural'' coalgebraic subcategory.