Search results for "Closed category"

showing 10 items of 10 documents

Topological systems and Artin glueing

2012

Abstract Using methods of categorical fuzzy topology, the paper shows a relation between topological systems of S. Vickers and Artin glueing of M. Artin. Inspired by the problem of interrelations between algebra and topology, we show the necessary and sufficient conditions for the category, obtained by Artin glueing along an adjoint functor, to be (co)algebraic and (co)monadic, incorporating the respective result of G. Wraith. As a result, we confirm the algebraic nature of the category of topological systems, showing that it is monadic.

Artin approximation theoremClosed categoryAlgebraic structureMathematics::Category TheoryGeneral MathematicsConcrete categoryCategory of topological spacesVariety (universal algebra)TopologyEnriched categoryConductorMathematicsMathematica Slovaca
researchProduct

Wellfounded Trees and Dependent Polynomial Functors

2004

We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by in- vestigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class of endofunctors on locally cartesian closed cat- egories.

Class (set theory)Pure mathematicsCartesian closed categoryFunctorType theoryMathematics::Category TheoryComputer Science::Logic in Computer ScienceWellfounded trees locally cartesian closed categories categorical logicTree (set theory)PrewellorderingCategory theoryForgetful functorMathematics
researchProduct

Hypergraph functor and attachment

2010

Using an arbitrary variety of algebras, the paper introduces a fuzzified version of the notion of attachment in a complete lattice of Guido, to provide a common framework for the concept of hypergraph functor considered by different authors in the literature. The new notion also gives rise to a category of variable-basis topological spaces which is a proper supercategory of the respective category of Rodabaugh.

CombinatoricsFiber functorClosed categoryFunctorArtificial IntelligenceLogicMathematics::Category TheoryConcrete categoryUniversal propertyCone (category theory)Variety (universal algebra)Topological spaceMathematicsFuzzy Sets and Systems
researchProduct

On a generalization of Goguen's category Set(L)

2007

The paper considers a category which generalizes Goguen's category Set(L) of L-fuzzy sets with a fixed basis L. We show the necessary and sufficient conditions for the generalized category to be a quasitopos and consider additional inner structure supplied by the latter property.

Discrete mathematicsClosed categoryArtificial IntelligenceLogicDiagram (category theory)Complete categoryMathematics::Category TheoryCategoryConcrete categoryCategory of setsEnriched categoryMathematicsTopological categoryFuzzy Sets and Systems
researchProduct

Some remarks on the category SET(L), part III

2004

This paper considers the category SET(L) of L-subsets of sets with a fixed basis L and is a continuation of our previous investigation of this category. Here we study its general properties (e.g., we derive that the category is a topological construct) as well as some of its special objects and morphisms.

Discrete mathematicsDiagram (category theory)General MathematicsConcrete categoryCategory of groupsL-set; category of L-subsets of sets; topological construct; topos; special morphism; special objectCombinatoricsClosed categoryMathematics::Category TheoryCategory of topological spacesCategory of setsEnriched category2-categoryMathematicsGlasnik matematički
researchProduct

Categories of lattice-valued sets as categories of arrows

2006

In this paper we introduce a category X(A) which is a generalization of the category of lattice-valued subsets of sets Set(JCPos) introduced by us earlier. We show the necessary and sufficient conditions for X(A) to be topological over XxA.

Discrete mathematicsHigher category theoryClosed categoryArtificial IntelligenceLogicMathematics::Category TheoryCategoryConcrete categoryCategory of topological spacesCategory of setsTopological category2-categoryMathematicsFuzzy Sets and Systems
researchProduct

The cartesian closed bicategory of generalised species of structures

2007

AbstractThe concept of generalised species of structures between small categories and, correspondingly, that of generalised analytic functor between presheaf categories are introduced. An operation of substitution for generalised species, which is the counterpart to the composition of generalised analytic functors, is also put forward. These definitions encompass most notions of combinatorial species considered in the literature — including of course Joyal's original notion — together with their associated substitution operation. Our first main result exhibits the substitution calculus of generalised species as arising from a Kleisli bicategory for a pseudo-comonad on profunctors. Our secon…

FunctorGeneral MathematicsSubstitution (logic)species of structures analytic functorPresheafComposition (combinatorics)BicategoryMathematics::Algebraic TopologyAlgebraCartesian closed categoryCombinatorial speciesMathematics::Category Theorybicategory cartesian closed categoriesMathematicsJournal of the London Mathematical Society
researchProduct

On operads, bimodules and analytic functors

2017

We develop further the theory of operads and analytic functors. In particular, we introduce a bicategory that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that this bicategory is cartesian closed. In order to obtain this result, we extend the theory of distributors and the formal theory of monads.

General Mathematics0102 computer and information sciences01 natural sciencesMathematics::Algebraic TopologyQuantitative Biology::Cell BehaviorMathematics::K-Theory and HomologyMathematics::Quantum AlgebraMathematics::Category Theory18D50 55P48 18D05 18C15FOS: MathematicsAlgebraic Topology (math.AT)Category Theory (math.CT)Mathematics - Algebraic Topology0101 mathematicsMathematicsFunctorOperad bimodule analytic functor bicategoryTheoryMathematics::Operator AlgebrasApplied Mathematics010102 general mathematicsOrder (ring theory)Mathematics - Category Theory16. Peace & justiceBicategoryAlgebraCartesian closed category010201 computation theory & mathematicsBimodule
researchProduct

Polynomial functors and polynomial monads

2009

We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.

Pure mathematicsPolynomialFunctorGeneral MathematicsMathematics - Category Theory18C15 18D05 18D50 03G30517 - AnàlisiMonad (functional programming)BicategoryMathematics::Algebraic TopologyCartesian closed categoryMathematics::K-Theory and HomologyMathematics::Category TheoryPolynomial functor polynomial monad locally cartesian closed categories W-types operadsFOS: MathematicsPolinomisCategory Theory (math.CT)Mathematics
researchProduct

On the category Set(JCPos)

2006

Category Set(JCPos) of lattice-valued subsets of sets is introduced and studied. We prove that it is topological over SetxJCPos and show its ''natural'' coalgebraic subcategory.

SubcategoryDiscrete mathematicsLogicConcrete categoryTopological categoryClosed categoryMathematics::K-Theory and HomologyArtificial IntelligenceMathematics::Category TheoryCategoryCategory of topological spacesEnriched categoryCategory of setsMathematicsFuzzy Sets and Systems
researchProduct